
Visualizing Code and Coverage Changes for Code Review

Sebastiaan Oosterwaal
Arie van Deursen

Delft University of Technology
The Netherlands

sebastiaan.oosterwaal@gmail.com
Arie.vanDeursen@tudelft.nl

Roberta Coelho

Federal University of
Rio Grande do Norte

Brazil
souzacoelho@gmail.com

Anand Ashok Sawant
Alberto Bacchelli

Delft University of Technology
The Netherlands

A.A.Sawant@tudelft.nl
A.Bacchelli@tudelft.nl

ABSTRACT
One of the tasks of the reviewer is to verify that code modifica-
tions are well tested. Unfortunately, with current tool support, it is
hard to understand precisely how changes to the code correspond
to changes to the tests. In particular, it is hard to see if modified test
code actually covers the modified code. To overcome this problem,
we developed OPERIAS, a tool that provides a combined visualiza-
tion of fine-grained source code differences and coverage impact.
OPERIAS works both as a stand-alone tool on specific project ver-
sions and as a service hooked to GitHub. In the latter case, it pro-
vides automated reports for each new pull request, which the re-
viewer can use to assess the code contribution. OPERIAS works for
any Java project that works with maven and its standard Cobertura
coverage plugin. We present how OPERIAS can be used to iden-
tify a number of test-related problems in existing real-world pull
requests. OPERIAS is open source and available on GitHub with a
demo video: https://github.com/SERG-Delft/operias

1. INTRODUCTION
Code review consists in the manual assessment of source code

changes by developers other than the author and is mainly intended
to identify defects and quality problems before the deployment in a
live environment [9]. Several studies provided evidence that code
review supports software quality and reliability crucially [8, 18].

Modern code reviews (MCR) [9], as currently used in several
large software and open-source software (OSS) projects, are in-
formal, asynchronous, and supported by tools. Popular examples
of code review tools are CodeFlow by Microsoft [9], Gerrit by
Google [5], and the GitHub pull-request (PR) mechanism [4]. Al-
though great for supporting the logistics of code review (e.g., invit-
ing reviewers, in-line commenting, and accept/reject decisions),
code review tools currently offer no support to help reviewers eval-
uating the quality of a change, other than basic highlighted textual
differencing.

Particularly, current code review tools offer no information on
how a code change under review affects test coverage, even though
this is one of the most important pieces of information for develop-
ers when assessing a code change [21]. In fact, not only software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE ’16 Seattle, Washington USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

must evolve over time to stay useful [13], but newly added features
should be tested as soon as possible to ensure that they work prop-
erly [19] and any change to existing code requires a retest, since
any change could potentially invalidate the test suite [14].

In this paper we present OPERIAS, the tool we devised to try to
fill this gap. OPERIAS enriches code review tools with fine-grained
test coverage change information. It comprises two parts: (1) The
core part, which accepts two versions of a software project, com-
putes the differences in both source code and statement coverage,
and outputs a report in XML and HTML format; and (2) the code
review extension part, which runs the core as a service and con-
nects it to GitHub, so that a report is automatically generated for
every opened PRs and reviewers can see fine-grained test coverage
information while evaluating the code.

As a form of initial evaluation of OPERIAS, we use it to analyze
PRs from three OSS projects. Results indicate that OPERIAS would
provide reviewers with new information for 27% to 71% of the PRs
and that it would be useful in a number of scenarios, such as when
it makes visible that a code change affects the coverage of a class
not directly modified in the PR.

2. OPERIAS IN A NUTSHELL
OPERIAS is a tool to collect, analyze, and visualize simultane-

ously code change and related test coverage information to support
the code review process. In the following we detail how it is imple-
mented and the visualization it offers.

2.1 Implementation details
OPERIAS is available as an OSS project and is implemented for

the Java eco-system. It builds upon the standard Maven [1] setup
for Java projects (in which tests are executed with the maven Sure-
fire plugin) and takes advantage of the standard maven Cobertura
plugin to obtain both statement (or line) and condition coverage
information.

Given two versions of such a maven project, OPERIAS produces
an XML and a HTML report that provides the combined visualiza-
tion of the changes in the code as well as in the test coverage. The
two versions can be in two separate directories or can be identified
as two commits (or tags) in a git repository. To get the changes
between the two folders, we use Myer’s diff algorithm [15] and an-
notate them with test coverage information; details about the diffing
mechanism are available on the accompanying thesis [16].

OPERIAS can also operate as a service hooked to git or GitHub:
With this service, whenever a PR is opened on GitHub, OPERIAS is
run to visualize the changes in code and coverage introduced by this
PR. The service notifies involved GitHub users, by automatically
adding a comment to the appropriate PR and providing a link to the
visualization (Figure 1).

https://github.com/SERG-Delft/operias

� Pull requests Issues GistThis repository Search � P

11 196D Watch ! Star � ForkSERG-Delft / jpacman-framework�

R Code � Issues 3
 Pull requests 3 � Wiki m Pulse : Graphs

+2 −166

Labels

Milestone

No milestone

Assignee

No one assigned

3 participants

Removed all logging and logback resources #23

 Merged avandeursen merged 1 commit into from on Apr 17, 2014

master remove-logback

HHHHHE Conversation 2 � Commits 1 C Files changed 9

None yet

Notifications

You’re not receiving notifications

from this thread.

� Subscribe

Collaboratorjeroenroosen commented on Apr 17, 2014

I removed the logging as we discussed in https://github.com/avandeursen/jpacman-
testing/pull/11#issuecomment-40687067

Do note that we lose quite some debugging information in the process - but nothing we couldn't already
see in Eclipse.

� Removed all logging and logback resources fcdb3a11

soosterwaal commented on Apr 17, 2014

This pull request will have the following effects on the line and condition coverage of the project:

The line coverage increased from 38.03% to 38.79%
The line coverage stayed the same at 30.82%

The following changes were made to the source code of the project:

2 (0.11%) (1 relevant) lines were added, which are line covered for 0.0%
174 (9.26%) (59 relevant) lines were removed, which were line covered for 25.0%

Click here for a more detailed report for this pull request.

e

� Closed

avandeursen referenced this pull request in soosterwaal/operias on Apr 17, 2014

Coverage stayed same and increased? #72

Owneravandeursen commented on Apr 17, 2014

Thanks!

� avandeursen merged commit 9892b60 into on Apr 17, 2014

1 check passed

View detailsmaster

� avandeursen deleted the branch on Apr 17, 2014remove-logback

� Styling with Markdown is supportedWrite Preview

Attach files by dragging & dropping, selecting them, or pasting from the clipboard.

Leave a comment

Comment

Authentication error
You are not logged in to Octopull.

Log in k

Figure 1: An OPERIAS generated comment on GitHub

2.2 Reporting changes and test coverage
OPERIAS generates a number of browsable reports to visualize

code changes together with the corresponding test coverage infor-
mation. We detail them from the least to the most fine-grained.

Project Overview. The ‘project overview’ is the first report
(Figure 2), in which all packages are displayed. By clicking on
a package, all changed classes within this package appear. For ev-
ery class and package, two bars visualize the status of condition
and statements coverage. These bars make use of four colors (also
used in the ’class view’ with the same semantic) with the follow-
ing meaning: light green indicates parts that were covered in the
original version and are still covered in the new version, dark green
indicates an increase in coverage in the new version, light red indi-
cates parts not covered in the original version and still not covered
in the new version, and dark red indicates parts that were covered
but are no longer covered in the new version. To increase readabil-
ity, also coverage percentage points are visualized in the report.

The ‘project overview’ reports also provides an indication for
deleted and newly created classes. A shaded row means that pack-
age or class was deleted. In that case, the coverage bars indicate
the coverage of the original file by only using the light colors. If a
class is new, the bars consists of only dark red and dark green parts,
which indicate the revised coverage percentage of the class.

Test View. The ‘test view’ report (Figure 3) contains information
on source changes in test classes (coverage does not apply). To
support reviewing tests, we show the outcome of the execution of
the test cases. For both the original and revised versions, a list of
failed or errored test cases are shown. When clicking on a test case
in the list, it shows whether it failed or errored and see the complete
stacktrace generated by the test suite (example images are available
in the accompanying thesis [16]).

Class View. The finest-grained visualization is offered by the
‘class view’ report, which can be accessed by clicking on any class
in the ‘project overview’. In the report, up to four code views are
shown: original file, where the original file is shown with the cov-
erage information for that version of the code (as expected, green
means covered, red means not covered); revised file, which corre-
sponds to the previous view, but showing the new version of the file;
source changes, where only source changes between the versions
(since red and green are used for conveying coverage information,
we use the shaded background to mean that the line was deleted and
a box around a line or a group of lines means that these lines were
inserted in the new version); and combined view, the most char-
acteristic view of OPERIAS, where it shows both source changes
(similarly to the previous view) and coverage information for both
versions (Figure 4) using the four colors that are used to indicate a
change in coverage in the same way as described above, but now
for specific lines of code.

These four views are available for changed files. For added files,
only the revised file view is shown including the coverage informa-

Table 1: Distribution of test coverage change across pull requests
Test coverage across pull requestsProject Decreased Stable Increased

Bukkit 38% 29% 33%
JUnit 20% 73% 07%
Wire 25% 35% 40%

tion, for deleted files, only the original file view is shown. When
opening a changed test file, only the source diff view is viewable
since there is no information about coverage available.

3. REAL-WORLD USAGE SCENARIOS
We present real world usage scenarios to illustrate the benefits of

the code change assessment support that OPERIAS offers by pro-
viding fine-grained test coverage information. We explore three
OSS projects (JUnit [6], Wire [7], and Bukkit [2]) from different
application domains and size, and hosted on the GitHub platform.

Overall applicability. As a first step, we get an indication of
the general applicability of OPERIAS. We check the distribution of
changes in test coverage across all the PRs of the selected project.
We do so by running OPERIAS core on the entire code history and
computing the effects of each single PR on the test coverage of
the overall project. Table 1 summarizes the results, showing the
proportion of PRs in which test coverage decreases, is stable, or
increases. Results show that for JUnit (a well-tested system) only
few PRs increase the coverage, while for Bukkit and Wire (with
less coverage to start with) at least a third of PR increase it. More
extensive metrics and underlying causes are discussed in the ac-
companying thesis [16]; here we note that OPERIAS would provide
test coverage information, which is currently not available to re-
viewers, for a significant proportion of PRs (from a minimum of
27% PRs for JUnit, up to a maximum of 71% PRs for Bukkit).

Usefulness. As a second step, we investigate the usefulness of
OPERIAS from the point of view of the reviewer, in order to verify
whether the newly provided information has the potential to help
the reviewer in judging a code contribution. To do so, from the
three projects we manually inspect several PRs in which test cover-
age is either increased or decreased. The complete analysis can be
found in the accompanying thesis [16], here we limit ourselves to
interesting PRs from JUnit.

PR/#767: In this PR, a new ‘plugin’ package is added. OPERIAS’
‘project overview’ shows the reviewer that all the newly cre-
ated classes are dark green and fully (100%) tested (figure
omitted for space reasons, available in [16]). Furthermore,
the PR changed another class and the reviewer can see a
small dark red bar, indicating new code that is not tested.
The reviewer is able to click on that class and, with the com-
bined ‘Class View’ (Figure 5), see exactly which lines were
added and where testing is lacking.

PR/#896: In this PR, the contributor makes a 1-line change to one
class and adds 117 test lines for this class. While this sounds
like a good PR, using OPERIAS the reviewer can see (Fig-
ure 6) that the change affects the statement coverage of a
completely different class (‘EachTestNotifier’) reducing its
coverage by 10%. Even though this class is not part of the
original PR, OPERIAS shows it because its coverage is af-
fected by the changes under review. Industrial reviewers re-
ported that knowing which parts of the code are indirectly
affected by a change is crucial to asses its quality [21]; using
OPERIAS indirect changes in coverage are easy to detect.

https://github.com/junit-team/junit/pull/767
https://github.com/junit-team/junit/pull/896

Figure 2: The ‘project overview’ with package- and class-level information

Figure 3: The ‘test view’ with data on added/removed test lines

Figure 4: The combined view in the ‘class view’ report

PR/#646: In this PR, five new test cases added to the project, next
to a few changes in the code. Even if the test cases would
properly test new or existing code, they are not executed be-
cause they are not added to the ‘AllTests’ class; in fact, for a
test case to be successfully executed within the JUnit project,
it must be added to this class. Using OPERIAS, the reviewer
can quickly see that the added test code affects neither line
coverage nor condition coverage (Figure 7), thus indicating
that the new tests are not executed and the absence of changes
to the class ‘AllTests’ from the view.

Although anecdotal, these examples of PRs provide initial evi-
dence on the potential of OPERIAS in supporting the code review
process. As a future evaluation, we plan to design and conduct a
controlled experiment to measure the causal effects of OPERIAS on
the code review process, in particular with respect to the reviewing
speed and number of changes suggested by reviewers. Moreover,
an observational study can be conducted to see whether the usage of
OPERIAS has a relation with a reduced number of further changes
needed in code already accepted through PRs.

4. RELATED WORK
Previous research on the pull-based development model has high-

lighted the importance of tests in pull requests. First, pull requests
are merged faster in a well-tested system [10]; then integrators, re-

Figure 5: Effect of PR/#767 on the coverage of a changed class.

sponsible for merging, indicate that adequate testing is a key quality
factor taken into account when deciding whether or not to accept
a change. [11]. Pham et al discuss the testing culture on GitHub
projects, and observe that projects indeed insist on tests in PRs [17].

Although many tools exist to either show differences between
two versions of a piece of code or compute test code coverage
(e.g., [3]), only a few combine both pieces of information in one
view. The most popular are: Coveralls.io [12] and SonerQube [20].

Coveralls.io [12] is a web application that analyzes the report
created by Cobertura [3] by comparing the test coverage metrics
to a previous report. It shows an overview with detailed cover-
age information also showing whether test coverage increased or
decreased, at the file level. Test coverage information is not in-
tegrated in the review process and Coveralls.io does not provide
fine-grained information about which lines are affected in terms of
test coverage.

SonarQube [20] is an extensive tool to evaluate the quality of a
codebase and its changes; it visualizes information on code dupli-
cation, coverage, code complexity and more. Particularly, it shows
current coverage information of a class and one can filter on se-
lected changes or timeframes, showing lines to cover, branches
to cover, uncovered lines and uncovered branches. Nevertheless,
SonarQube does not provide any comparison view of test coverage
between changes, but only reports on review specific statuses.

5. CONCLUSIONS
We created OPERIAS as a code review support tool that lets re-

viewers visualize fine-grained test coverage information while eval-
uating a code contribution on GitHub. Through real-world exam-

https://github.com/junit-team/junit/pull/646

Operias

Legend

Was originally covered

Is now covered in the new version

Was originally not covered

Is not covered anymore in the new version

Packages

Name Line coverage # Relevant lines Condition coverage # Conditions Source Changes

org.junit.internal.runners.model -7.41% 0 (0.0%) 0.0% 0 (0.0%)

EachTestNotifier -9.52% 0 (0.0%) 0.0% 0 (0.0%)

org.junit.runners 0.0% 0 (0.0%) 0.0% 0 (0.0%)

ParentRunner 0.0% 0 (0.0%) 0.0% 0 (0.0%) +1 (0.22%) -1 (0.22%)

ParentRunner$4 0.0% 0 (0.0%) 0.0% 0 (0.0%) +1 (0.22%) -1 (0.22%)

Test Classes

Name Amount of lines changed

/src/test/java/org/junit/tests/running/classes/ParentRunnerTest.java +117 (78.0%)

Failed Test Cases

Figure 6: Effect of PR/#896 on the coverage of classes, including the not changed ‘EachTestNotifier’ class.

Operias

Legend

Was originally covered

Is now covered in the new version

Was originally not covered

Is not covered anymore in the new version

Packages

Name Line coverage # Relevant lines Condition coverage # Conditions Source Changes

org.junit -5.3% +16 (6.56%) -7.36% +5 (10.64%)

Assert -7.41% +16 (8.99%) -13.57% +5 (16.67%) +35 (3.72%)

Test Classes

Name Amount of lines changed

/src/test/java/org/junit/tests/utilityclass/MultipleConstructorUtil.java 11 (New)

/src/test/java/org/junit/tests/utilityclass/NonFinalUtil.java 7 (New)

/src/test/java/org/junit/tests/utilityclass/ProperUtil.java 11 (New)

/src/test/java/org/junit/tests/utilityclass/PublicConstructorUtil.java 12 (New)

/src/test/java/org/junit/tests/utilityclass/UtilityClassTest.java 39 (New)

Failed Test Cases
Figure 7: Effect of PR/#646 on the coverage; since ‘AllTests’ does not include the new tests, there is no positive change in coverage.

ples we gave initial evidence of its usefulness in a number of re-
vieweing scenarios and, potentially, for a large proportion of changes
to review. The tool and a video of OPERIAS is available at https:
//github.com/SERG-Delft/operias

6. REFERENCES
[1] Apache Maven. https://maven.apache.org/.
[2] Bukkit. http://bukkit.org/.
[3] Cobertura. http://cobertura.github.io/cobertura/.
[4] Collaborative code review. https://github.com/features.
[5] Gerrit code review. https://www.gerritcodereview.com.
[6] Junit. http://junit.org/.
[7] Wire. https://github.com/square/wire.
[8] A. Ackerman, L. Buchwald, and F. Lewski. Software

inspections: an effective verification process. Software,
IEEE, 6(3):31–36, 1989.

[9] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In Proceedings of the
2013 International Conference on Software Engineering,
pages 712–721. IEEE Press, 2013.

[10] G. Gousios, M. Pinzger, and A. van Deursen. An exploratory
study of the pull-based software development model. In
ICSE, pages 345–355, 2014.

[11] G. Gousios, A. Zaidman, M. Storey, and A. Van Deursen.
Work practices and challenges in pull-based development:
the integrator’s perspective. In Proceedings International
Conference on Software Engineering (ICSE), 2015.

[12] L. H. Industries. Coveralls. https://coveralls.io/.

[13] M. Lehman. On understanding laws, evolution, and
conservation in the large-program life cycle. Journal of
Systems and Software, 1:213–221, 1980.

[14] L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink.
On the interplay between software testing and evolution and
its effect on program comprehension. In Software evolution,
pages 173–202. Springer, 2008.

[15] E. Myers. Ano (nd) difference algorithm and its variations.
Algorithmica, 1(1-4):251–266, 1986.

[16] S. Oosterwaal. Combining source code and test coverage
changes in pull requests. Master’s thesis, Delft University of
Technology, 2015. http://repository.tudelft.nl/.

[17] R. Pham, L. Singer, O. Liskin, K. Schneider, et al. Creating a
shared understanding of testing culture on a social coding
site. In Software Engineering (ICSE), 2013 35th
International Conference on, pages 112–121. IEEE, 2013.

[18] P. Rigby, B. Cleary, F. Painchaud, M. Storey, and D. German.
Open source peer review – lessons and recommendations for
closed source. To appear in IEEE Software, 2012.

[19] P. Runeson. A survey of unit testing practices. Software,
IEEE, 23(4):22–29, 2006.

[20] S. SA. Sonarqube. http://www.sonarqube.org/.
[21] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim. How do

software engineers understand code changes?: An
exploratory study in industry. In Proceedings of FSE 2012
(20th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering), FSE ’12, pages
51:1–51:11. ACM, 2012.

https://github.com/SERG-Delft/operias
https://github.com/SERG-Delft/operias
https://maven.apache.org/
http://bukkit.org/
http://cobertura.github.io/cobertura/
https://github.com/features
https://www.gerritcodereview.com
http://junit.org/
https://github.com/square/wire
https://coveralls.io/
http://repository.tudelft.nl/
http://www.sonarqube.org/

A walk through Operias

In this walk through we introduce John, an open-source software (OSS) developer interested

in contributing to SimpleMath, an OSS project hosted on GitHub that. SimpleMath is a utility

that provides functionality to multiply and divide two integers; Figure 1 shows the two classes

in this project.

(a) Multiplier class in SimpleMath (b) Divider class in SimpleMath

Figure 1: Classes in SimpleMath

(a) MultiplierTest class
(b) DividerTest class

Figure 2: Unit tests in SimpleMath

The developers of this project require every line of code to be tested. This results in the test

classes that can be seen in Figure 2.

John uses the SimpleMath module in his application to perform simple division. He notices that

sometimes his application crashes when the divisor is 0. The stack trace shows that this error

originates from the Divider class. He looks at the implementation of the class and discovers

an obvious flaw in the divide method, wherein there is no check for division by 0. To fix this,

he adds a check (Figure 3) and issues a Pull Request (PR) on the repository.

Figure 3: Fixed Divider class

Once the PR is issued, Operias checks out the base and the revised version of the code and

analyzes both. Afterwards, it posts a comment (Figure 4) on the PR summarizing the changes

with respect to code coverage and a link to a detailed report with a line-by-line overview.

Figure 4: A comment to a PR automatically generated by Operias

Alex is a core developer of SimpleMath who reviews the PR created by John. First, he sees the

comment posted by Operias that the PR has reduced the statement coverage and the conditional

coverage of the project. He sees that only 33.3% of the added lines are tested. He then inspects

the detailed report (Figure 5) to get a clear idea of exactly which changes negatively impacted

the coverage.

In the detailed report Alex sees that a change to the Divider class (A) has reduced the line

coverage by 25% (B) and the branch coverage by 50% (C) due to the introduction of one new

branch statement (D). By clicking on the class name he sees a detailed view of the change in

line-by-line coverage statistics and the changed code of the class (Figure 6).

A

B C D

Figure 5: Detailed report on changed test coverage in a submitted PR, generated by Operias

A

B C D E

F

Figure 6: Line-by-line detail for Divider class

In the detailed overview for the class, Alex sees the delta in terms of coverage on a line-by-line

basis. The legend (A) helps him identify the the various color codings in the detailed report.

For instance red indicates the lines that have not been covered in the new version of the code.

To make his task easier, there are four options that allow him to see the original coverage (B),

the revised coverage (C), the source difference (D) and a combined view of all 3 (E, F).

Alex clicks on the original coverage tab to see what the file looked like before any modifications

(Figure 7). Here he notices that the file was covered in its entirety. He then proceeds to click

on the revised coverage tab and sees that the if statement is not fully covered and needs to be

tested (Figure 8).

Figure 7: Original coverage report

This information leads Alex to reject the pull request as it has a negative impact on code cov-

erage and thus does not fully comply with the coding practices of the SimpleMath project. He

asks John to re-issue a new PR wherein the added code has been tested sufficiently.

Figure 8: Revised coverage report

John understands that he has to add a test that executes the else branch of the if statement as

well and to that end he adds an additional test to the DividerTest class as seen in figure 9.

On adding the new test, John issues a new PR on the SimpleMath library. This time Operias

posts the comment as seen in figure 10. Alex reviews this new PR and sees that the coverage

statistics are all at 100% again, and that this is due to the addition of a new test case that tests

the previously added code. This time he happily accepts the PR as it meets his expectation and

thanks John for his contribution.

Figure 9: Updated DividerTest class

Figure 10: Operias comment on new PR

	Introduction
	Operias in a nutshell
	Implementation details
	Reporting changes and test coverage

	Real-world usage scenarios
	Related Work
	Conclusions
	References

